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An analysis is presented of the deformation of a solid-like, viscoelastic sphere 
suspended in the infinite Stokesian flow field of a Newtonian fluid undergoing an 
arbitrary time-dependent homogeneous deformation far from the particle. The 
results of the analysis are then used to deduce the macroscopic rheological be- 
haviour of a dilute monodisperse suspension of slightly deformable spheres. 

Even though inertial effects and second-order terms in the particle deformation 
are neglected, it is found that non-linear rheological effects can arise, because of 
the interaction between the deformed particle and the flow. As a consequence, the 
rheological relation obtained here differs from those presented earlier by Froh- 
lich & Sack (1946) and by Oldroyd (1955) through the appearance of certain 
terms which are non-linear in the deformation rate. 

When the suspended particles are purely elastic in their behaviour the rheo- 
logical equation presented here reduces for certain flows to a special case of 
Oldroyd’s ( 1958) phenomenological model, with material constants which can be 
directly related to suspension properties. 

1. Introduction 
The problem of deducing theoretically the macroscopic rheological behaviour 

of microscopically heterogeneous fluids has received considerable attention, 
dating from the celebrated early work of Einstein (1906, 1911) on the viscosity 
of dilute suspensions of solid spheres in Newtonian liquids. 

Owing to their particular relevance to an understanding of elastic effects in 
emulsions as well as solutions of deformable macromolecules, mathematical 
models for suspensions of deformable elastic particles have been the subject of 
several works. Following the work of Frohlich & Sack (1946) on the irrotational 
flow of dilute suspensions of elastic spheres, Oldroyd (1953,1955) treated suspen- 
sions of solid and liquid spheres exhibiting complex interfacial effects. Cerf (1951) 
has also considered suspensions of solid viscoelastic spheres, in connexion with a 
study of flow birefringence of polymer solutions, but he did not analyse the 
rheology of such suspensions in great detail. More recently, Giesekus (1962) has 
made both experimental and theoretical studies of deformable particles in certain 
types of shear fields, but the theoretical studies deal mainly with simplified 
hydrodynamic models. 

The present study was undertaken for two reasons. First of all, it was desired 
to determine the effects of shear-induced particle deformation and rotation on 
suspension behaviour for situations where Brownian effects are absent. In  the 
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previous works of Frohlich & Sack (1946) and of Oldroyd (1953), dealing with 
spherical particles or drops, the rate of particle deformation is accounted for by 
a matching of velocities at  a fluid-particle interface, but both these authors 
assume that the deviation of the particle from a spherical shape is sufficiently 
small so that interfacial matching conditions can be imposed at the surface of the 
original sphere. While this approximation appears to be exact to terms of the 
first order in the rates of deformation of both the fluid and the particle, the present 
analysis will show that the ellipticity of the deformed sphere gives rise to addi- 
tional stresses at  the particle surface, which involve bilinear terms in the fluid 
deformation rate and the particle strain. As will be shown, these terms can give 
rise to non-linear effects in the suspension behaviour, even if terms of the second 
order in particle strain are considered negligible. 

A second objective of the present work is to present a derivation of the macro- 
scopic rheology of dilute suspensions which proceeds directly from a knowledge 
of individual particle behaviour at infinite dilution. The present technique ap- 
pears to be more convenient in general than the ‘cavity’ technique employed by 
Frohlich & Sack (1946) and later by Oldroyd (1953), since it requires no a priori 
assumption as to the form of the rheological equation being sought. 

1.1.  Motion of a single viscoelastic sphere in a homogeneou,s 
velocity-gradient Jield 

We wish to derive here the equations describing the simultaneous rotation and 
deformation of a single viscoelastic particle placed in a time-dependent flow field 
of an incompressible Newtonian fluid having a homogeneous, i.e. spatially uni- 
form, velocity gradient far from the particle. 

We shall assume that the particle is composed of a homogeneous and isotropic, 
solid-like material and that, in its undeformed or stress-free state, the particle is 
spherical in shape. Furthermore, we shall suppose that the rheological constitu- 
tive equation of the solid is known so that, once the stress history is completely 
specified over the surface of the particle, its instantaneous deformation can in 
principle be determined. 

The problem consists therefore of determining the motion and deformation of 
the particle when it is placed in an infinite flow field whose (time-dependent) 
velocity distribution, the ‘undisturbed’ flow, is prescribed far from the particle. 
This is a well-known type of problem which involves the simultaneous solution 
of the equations of motion for the fluid and for the particle, with a matching of 
the local stress and velocity (or displacement) a t  the particle surface. Since we 
shall postulate here the absence of interfacial effects, this matching can be im- 
posed on all the components of the velocity and surface-stress vectors. 

As regards the forces acting in our system, we shall assume that the density of 
the particles is the same as that of the fluid, or that buoyancy forces are otherwise 
negligible, and, as an approximation, that inertial forces are everywhere negli- 
gible beside elastic and viscous forces. In this case, the force balance becomes 
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in the regions occupied by the fluid and the particle; and, as a consequence, the 
equations of motion for the fluid reduce to the well-known Stokes equations: 

pv2v = vp, w.v = 0, (1.2) 

where T = T(r, t) is the stress tensor, v = v(r, t) and p = p(r, t )  are the vector 
velocity field and the pressure field in the fluid, and p is the fluid viscosity, with r 
and t denoting, respectively, the position vector and time. In  a later paragraph 
we shall offer some criteria for validity of our omission of inertial effects. 

Once the appropriate rheological equation for the particle is specified a second 
equation of motion, the analogue of ( l . l ) ,  can be written down for the region 
occupied by the particle. Letting primed quantities refer to this region and 
matching velocity and stress at  the surface of the particle 9”( t ) ,  say, we have 
then that 

and 
for r on Y’(t), 

v(r,t) = v’(r,t) 

T(r,  t) . n = T’(r, t). n (1.3) 

where n denotes the unit normal toy ’ .  As is done above, we shall employ Gibbs’ 
dyadic notation in the following analysis, with vectors and tensors denoted by 
bold face lower- and upper-case letters, respectively. 

Now, one further condition on fluid velocity, far from the particle, will suffice 
in principle for determination of the motion. Letting r denote the position vector 
referred, say, to the mass centre of the particle, we shall take this remaining con- 
dition to be 

where r = Irl and rco)(t) is a velocity-gradient tensor, v(0) denoting the ‘un- 
disturbed’ flow velocity. 

Having thus posed the problem, at least up to a specification of the rheological 
equation for the particle, we shall now introduce an hypothesis, based largely on 
the previous work of Frohlich & Sack (1946) and Cerf (1951), which will greatly 
facilitate its solution. In particular, if the material of the particle is homogeneous 
and isotropic and if its instantaneous strain depends only on the past history of 
stress, we are led to suppose that, in the absence of surface tension or other inter- 
facial effects, the motion of the original sphere will consist of purely homogeneous 
deformation, in which case the velocity-gradient field is homogeneous inside the 
particle. This supposition can be justified in a heuristic fashion by noting, first 
of all, that under a homogeneous deformation a spherical or ellipsoidal particle 
will be transformed at any instant into an ellipsoid; furthermore, one can deduce 
from classical work of Jeffery (1922) that, for the motion of rigid solid ellipsoids 
in homogeneous velocity-gradient fields, the fluid stress on the surface of an 
ellipsoid gives rise to a homogeneous stress field in its interior. Provided then, in 
the present case, that a homogeneous stress history gives rise to homogeneous 
strain in the particle, it remains only to show that Jeffery’s result carries over to 
deformable spheres or ellipsoids. Indeed this is possible and, moreover, a com- 
plete solution to the present problem can be constructed by a slight modification 
of Jeffery’s solution, as we now show. It should be noted that Cerf (1951) has 
presented a similar, but less complete, argument. 

v+vCo) = F0).r ,  for r+m, (1.4) 

42-2 
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1.2. Extension of Jeffery’s result to defwmable ellipsoids 

In order to construct a solution to the present problem from Jeffery’s solution for 
the Stokes flow outside a rigid ellipsoid, we shall proceed as follows: we assume 
first that a particle of the type considered here undergoes a homogeneous de- 
formation and, hence, that it  always has an ellipsoidal shape. Next, we modify 
Jeffery’s solution for the flow field outside a rigid ellipsoid in such a way as to 
obtain the exact solution for the Stokes flow outside a homogeneously deforming 
ellipsoid. Finally, we verify that there exists a homogeneous stress field T’(t), say, 
inside the deforming ellipsoid which matches with the fluid stresses on its surface. 
Hence, it follows that we shall have found at  least one solution to the problem at 
hand, provided there exists a homogeneous particle deformation which is rheo- 
logically compatible with the homogeneous stress T’. We shall be able to formu- 
late this latter requirement more concisely after the following discussion. 

We proceed, then, by assuming that the strain inside the particle is homo- 
geneous; as a consequence, we can express the velocity v’ in the first equation of 

(1.3) by v‘ = I?’. r 

where r‘ = I”(t), independent of position, is the velocity-gradient tensor inside 
the particle. Next, decomposing I“ into a symmetric strain-rate tensor E‘ and 
an antisymmetric ‘vorticity ’ tensor Q’, we have 

r’ = E’+SY, (1.5) 

and we recall that the angular-velocity vector of the particle is simply - Vec Q‘. 
The first equation in (1.3) can now be replaced by 

v = (E’+ a’). r, for r onY‘(t), (1.6) 

where Y’(t) is an ellipsoidal surface. It follows then that, if E‘ and Q’ were speci- 
fied, the fluid motion outside the particle could be determined from (1.2),  (1.4) 
and (1.6). 

In conBast to the foregoing problem statement, the problem treated by 
Jeffery requires the solution of (1.2) subject to the conditions 

v = 8’. r, for r on Y’(t), 1 
v-+I’(O).r, for r-+oo, 

where againY’(t) is an ellipsoidal surface, and where Q’ = 8 ’ ( t )  and I?(0) = V o ) ( t ) .  
These equations govern the motion of a rigid ellipsoid in the absence of any 
externally applied force, and as shown by Jeffery the solution to this problem 
permits determination of Q’ and, hence, of the particle rotation, once rco) as well 
as any extraneous torque on the particle are specified. 

Considering here the case of zero torque only, we denote Jeffery’s solution for 
the fluid velocity, the pressure field, and the particle vorticity, respectively, by 

v = u[r(o), G’; r, t ] ,  p = q[I“O), G’; r, t ] ,  Q’ = W[W, GI; t ] ,  (1.8) 

where G’ = G’(t)  is a symmetric second-order tensor (to be defined in (1.13)) 
with principal axes which determine the instantaneous orientation of the ellip- 
soidal surface 9’. 
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Without writing any of the quantities in (1.8) down explicitly at this point, 
we note that u, q and W are all linear functions of their first argument 
which of course is a consequence of the linearity of (1.2) and (1.7). Because of this 
fact and owing to the absence of time derivatives in the problem at hand, it 
follows that the functions 

v = u[Fo)- E’, G’; r,t] + E’.r, 

p = g[r(O)- E’, G’; r, t ] ,  (1.9) i Q’ = w[r(o)- E’, G’; ti 
will satisfy (1.2), (1.4) and (1.6) as well as the condition of zero torque, provided 
of course that the surface Y’((t) in (1.7) is taken to coincide instantaneously with 
that in (1.6), and provided further that 

where ‘tr’ denotes the trace of a tensor. This latter condition corresponds to in- 
compressibility of the particles, and we shall assume henceforth that the particles 
are indeed composed of an incompressible material. 

Following Cerf, we observe now that Jeffery’s equations for the fluid stress 
acting on the surface of a rigid ellipsoid can be expressed as S . n, where n is the 

is a tensor independent of position on the surface and linear in FO). Hence, it 
follows readily by (l.l),  by the second equation of (1.3), and by (1.9) that the 
fluid stresses on the surface of a homogeneously deforming ellipsoid produce in its 
interior a stress field which is given by the homogeneous tensor 

V.(E’ . r )  = tr(E’) = V.v’ = 0, (1.10) 

unit normal and where s = s[r(o), G’; ti (1 .11)  

T’ = S[r(O)- E’, G’; t ]  + 2pE’ (1.12) 

plus perhaps an additive field T”(r,t), say. This latter field must satisfy (1.1) 
inside 9” and the condition 

T”.n = 0 

on 9”. However, since the only homogeneous stress satisfying these conditions is 
the trivial one, T” = 0, it  is seen that (1.12) provides a unique expression for the 
homogeneous stress field necessary to balance the fluid stresses on the surface of a 
homogeneously deforming ellipsoid. Hence, by taking T” = 0, thereby rejecting 
any extraneous non-homogeneous stress, we have found one possible solution for 
(1.2) to (1.4)) provided that the rheological relation between T’(t) and E‘(t) for 
the particle is compatible with (1.12). Otherwise stated, the rheological relation 
for the particle together with (1.12), S being given explicitly by Jeffery’s result, 
represent two relations between the unknowns T’ and E’. The existence of a solu- 
tion to these equations will guarantee the existence of a solution to the present 
problem, of the type assumed. 

We have not been able to establish here the general restrictions on particle 
rheology which are necessary for the existence of a unique solution. Instead, we 
shall restrict ourselves to an investigation of the limiting form of (1.12) for small 
particle deformations, which will be presented in the following section, and then 
in 52.2 we shall consider a specific rheological model, for which it appears that a 
unique solution exists. 
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We should again point out that previous work on related problems would tend 
to support our hypothesis of homogeneous particle deformation in the absence of 
surface effects. In  particular, the analysis of Frohlich & Sack (1946) for purely 
elastic solid spheres indicates a homogeneous deformation of the spheres, a condi- 
tion presupposed by Cerf (1951) in a similar problem. On the other hand, in 
Oldroyd’s (1  953) later, more comprehensive analysis involving viscoelastic 
spheres with interfacial tension, it is found that the motion of the particles con- 
sists in general of the sum of both a homogeneous and a non-homogeneous mode. 
However, for the special case of vanishing surface tension, one finds on closer 
inspection that, within the framework of the ‘cavity’ technique employed by 
Oldroyd, the magnitude of the non-homogeneous mode can be shown to be pro- 
portional to second-order terms in the volume fraction 4 ,  say, of the particulate 
phase. Since, as Oldroyd indicates later in his analysis, the accuracy of the tech- 
nique which he employed is limited to terms of order one in $, all terms of the 
second order could have been discarded at  an early stage in his analysis. Indeed, 
one finds from Oldroyd’s work (equations ( 2 5 )  to ( 2 8 ) )  that, for vanishing surface 
tension, a particle suspended in an infinite body of fluid (corresponding to A = 0 
in Oldroyd’s equations) would deform homogeneously (A’  = 0 in the same equa- 
tions). Thus, we are led to conclude that for vanishing surface tension the non- 
homogeneous motion is probably an artifact of the cavity technique itself. 

Of course, in the case of a finite surface tension, a non-homogeneous particle 
deformation would ensue, giving rise to a ‘circulatory’ motion and to the associ- 
ated stresses in the particle necessary to balance with surface forces. In this 
regard, it  should be noted that, in the absence of surface tension, Oldroyd’s 
equations would cease to apply once the particle deviates appreciably from 
spherical shape, whereas the analysis presented here could still remain valid, 
subject possibly to certain restrictions on the rheology of the particulate phase. 
Since we cannot offer a priori any rigorously defined restrictions, it  would seem 
reasonable, as anticipated at the outset, to limit the discussion to ‘solid-like’ 
materials, characterized by a unique ‘undeformed’ state of zero stress. For, with- 
out surface tension, it becomes somewhat meaningless in general to speak of 
liquid droplets. 

1.3. Motion of a slightly deformabbe sphere 
We shall now restrict our attention to spherical particles with sufficient rigidity 
to ensure that their deformations are always small. In  particular, and exactly as is 
done in the classical (linear) theory of elasticity, we shall assume that second- and 
higher-order terms in the components of the strain tensor are all negligible. The 
necessary conditions for small strains in the present problem will be stated more 
precisely below. 

We now let a, denote the radius of the undeformed sphere and ai(t), i = 1 , 2 , 3 ,  
the semiprincipal axes of the ellipsoid resulting from its deformation. Denoting 
further the finite strain tensor by C‘, and the Cauchy-Green deformation tensor 
by G’, we shall define the latter by taking its components to be 

(1.13) 
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on an orthogonal Cartesian co-ordinate system xi(i = 1,2,3) ,  chosen to coincide 
with the principal axes of deformation, while we define the former by taking 

G = I-2C’ (1.14) 

on an arbitrary system. The equation of the (ellipsoidal) surface of the particle is 
merely that of the ellipsoid of the tensor G‘, i.e. 

the last equality holding, of course, in any co-ordinate frame. 
By differentiating the preceding relation with respect to t and by noting that 

drldt = v‘ = r‘.r for r on 9”(t), 

one has that ( d G p t )  + (ry. G‘ + G‘ . r’ = 0, 

or, in terms of C’ and E’, that 

E’ = (dc’ /dt)  + (r’)+. c’ + c’ . (r’). (1.15) 

Here (I”)+ denotes the transpose or dyadic conjugate of I?’ which, by (1.5) is 

(r‘)+ = E’ - a’, (1.16) 

since (E’)? = E’ and (a’)+ = -a’. Equation (1.15) will be recognized as the 
definition of E‘ in terms of a ‘convected’ derivative of C’. 

In  order to express some of Jeffrey’s results in the present notation, we recall 
that the components of C’ on the axes of the ellipsoid are 

& [ I  - (ao/aJ2] for i = j ,  

for i + j ,  

i,j = 1,2,3.  Then for the present purposes, we can replace the semiprincipal axes 
of the ellipsoid in Jeffery’s paper by the functions of time, ai(t). However, by first 
restricting ourselves to the case of small strains, we have that 

a,/ao = 1 + C;, + $C;Z, + O(C;;) (1.17) 

with similar equations for i = 2,3. If then these expressions for ai(t) ,  in terms of 
the Cii(t), are substituted into Jeffery’s expression$ for the fluid stress on the 
surface of a rigid ellipsoid, one finds after some algebra that the components of 
the stress tensor S in (1.12)) as expressed on the axes of the ellipsoid, are 

AS,, = , ~ [ 5 E j t ) (  1 + $C;,) f $[E# c’ 
+EgJ)(C& - c;,)] + O(C’2) +p’, (1.18) 

AS,, = 5pE,(:)( 1 -$Ci3) + O(C’,), “-“‘)I 
with similar expressions for AS&, Si3, etc., obtained by cyclic permutation of the 
indices 1, 2,  3. Here p(O) = p(O)(t) is the undisturbed pressure field far from the 
ellipsoid, E$:’ = E$)(t) are the components of the deformation-rate tensor for the 

$ After correction of certain typographical errors, noted already by Giesekus (1962, 
footnote 28, p. 60) and by Cerf (1951). 
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undisturbed flow (again expressed on the axes of the ellipsoid), and 0(CI2) denotes 
quantities which involve terms of the second order in Cil, Cg, and CA3. To derive 
the preceding relations from those given by Jeffery, we have made use of the fact 
that the condition for incompressibility of the solid sphere, 

cIla,,a3 = a& 
reduces for small C’ to 

c;, + cg, + c;, - z(c;,cg, + c;, c;, + cg,c;,) + o(c’3) = 0. (1.19) 

In this regard we should note that it is necessary to retain the terms of the second 
order in (1.19) as well as those in (1.17) if one is to arrive at  the correct expression 
for terms of O(C’) in (1.18). (The derivation of expansions for the integrals, 
denoted by a,, Po, yo, . . . , in Jeffery’s paper, in terms of the Cil, involves division 
by terms O(C’).) 

Now, (1.18) can be expressed in dyadic notation by noting that, on the present 
co-ordinate system, i t  is merely 

S = ,u[~E(~)+~+-[E(~).C’+C’.E(O)]+~(E(O): C’) I]-p@)I+O(C’2), 
E(O) =: i[rco) +. (ray], ] (1.20) 

and En: C’ = tr (E(0). C’). 

Also, I denotes the unit tensor and E(O) is, of course, the deformation rate tensor 
for the undisturbed flow in Jeffery’s problem. Stated in the form (1.20) the above 
relation must be valid now on any co-ordinate system. When (1.20) is substituted 
into (1.12), with the modification indicated there, one obtains the desired ex- 
pression for the stress field T‘ inside the deforming ellipsoid of the present prob- 
lem. However, since we are dealing here with incompressible, isotropic materials, 
it  is necessary to consider only the deviatoric or ‘extra’ stress tensor, defined in 
general by 

where as before T is the stress tensor and 

P = T+pI, (1.21) 

(1.22) p = -1trT G -QT:I 
is the ‘mean’ pressure. In  terms of the deviatoric particle stress P’, (1.20) and 
(1.12) give 

P’(t) = 5p[A++(A.C’+C’.A)-+(A:C’)I]+2pE’+O(C’2), (1.23) 

where A = A(t) = E(’)(t) - E’( t )  (1.24) 

E’ and C’ being related by (1.15). 
Now, (1.15) contains sl’(t), the (unknown) rotation tensor for the particle, but 

we can also derive equations for this tensor for Jeffery’s results. In fact, one can 
show easily that Jeffery’s formula for rotation in the absence of torque can be 
expressed in the present notation as 

and C’ = C’( t ) ,  

As1 + C’ . (An) + (Asl) . C’ = E(O). C’ - C’ . E(O), (1.25) 

where = 8’ - Q(O), (1.26) 
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Q(O) denoting the rotation tensor of the undisturbed flow. (Giesekus (1962) has 
put this result in a different form, involving a third-order tensor.) Again, it  
follows from (1.9) in the preceding section that for deforming ellipsoids the tensor 
E(O)in (1.35) should be replaced by the tensor A of (1.24). Hence, with the approxi- 
mation of small strain, the resulting equation for AQ yields, on solution by 
‘successive approximations ’, 

AQ = A.C’-C’.A+O(C’’), (1.27) 

where as before O(C‘’) denotes terms involving the squares of the components of 
C‘. Thus, the rotation rate of the particle differs from the vorticity of the un- 
disturbed flow by terms of order one in the particle strain. 

It should also be pointed out here that, as is the case for a rigid ellipsoid, the 
resultant force as well as the torque on a deforming ellipsoid can readily be shown 
to vanish, which means in the present context that the ellipsoid moves with the 
mean velocity of the undisturbed flow, as presupposed implicitly in (1.4). 

In  summary, now, we note that (1.15), (1.23) and (1.27), together with the 
appropriate rheological equation for the particle relating C’(t) to P’(t) or, more 
generally, to the stress history (P’(t,), -a < t ,  < t )  would represent four equa- 
tions involving four unknown tensor quantities P’, C’, E’ and 8’. After a dis- 
cussion of the macroscopic rheology of particle suspensions, we shall consider 
below a specific and simple rheological model for the particulate phase, for which 
i t  appears that the above system is determinate. 

2. Dilute suspensions of viscoelastic particles 
Here we wish to present the method to be used in the present work for determin- 

ing the macroscopic rheological behaviour of dilute suspensions, starting from a 
knowledge of individual particle behaviour at  infinite dilution. Hashin (1964) and 
Happel & Brenner (1965) have recently given reviews, with extensive biblio- 
graphies, of past theoretical work on the rheology of suspensions. However, 
despite the wealth of papers dealing with dilute systems, it would appear that 
none of the techniques previously employed can be readily applied to the present 
problem. Thus, it  is appropriate to discuss next the assumptions involved in the 
technique to be used here, before actually applying it. 

2.1. Dilute suspensions of arbitrary particles 

The statistical foundations for a rheological theory of heterogeneous systems have 
been rather thoroughly discussed elsewhere (e.g. by Frisch 1964), but for the 
present purposes we shall rely on some of the simplifying assumptions discussed 
by Hashin (1964). In particular, we consider now a representative volume of our 
suspension containing a large number of particles; it will be convenient then to 
refer to the dimensions of the volume under consideration and to those of the 
particles as the macroscopic and the microscopic scales, respectively. We suppose 
now that the sample of suspension under consideration occupies a region 9 ( t )  of 
constant volume J‘ bounded by a closed surface 9’(t). Furthermore, we denote 
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by a ’ ( t )  the subregion of 9 ( t )  containing the particles and bySp’(t) its boundary, 
consisting of the fluid-particle interfaces. 

We imagine now that by application of the appropriate stresses on Y ( t )  the 
sample is subjected to a macroscopically homogeneous deformation, such that 
the velocity at  the surface 9 ( t )  is given by 

v(r,t)’= v(O)(r,t) = P ) . r  (2.1) 

up to an additive velocity term independent of position, with = Fo)( t )  being 
a velocity-gradient tensor, and r the position vector relative to an observer 
moving with (the mass centre, say, of) the sample. 

Then, by taking the integral over a(t) of the resultant velocity-gradient tensor 
r(r, t ) ,  which varies of course from point to point on the microscopic scale, we 
have that 

///a(t,r(r, t )dV = ///9(t,vv(r? W V  

where n is the unit outer normal to 9 ( t ) .  The first equality here follows from the 
definition of I’ and the second from an elementary result of vector calculus, pro- 
vided that v is continuous across the particle boundaries Y’(t); finally, the third 
equality is a consequence of (2.1), together with the (dyadic) relation 

(or its transpose), where V is the volume of 9 ( t ) .  Denoting volume averages over 
the entire sample by brackets ( ), we shall have then, by ( 2 . 2 ) ,  that 

and that (E) E(O) zf r(0) + (r(o))t. (2.3) 

That is to say, the volume averages of the velocity gradient and deformation rate 
are the same as the ‘macroscopic’ values imposed by (2.1). This relation has al- 
ready been cited by Hashin (1964). As indicated by his discussion, the question 
arises now as to the appropriate definition of the macroscopic stress in terms of 
T(r, t ) ,  the microscopic stress field in the sample. 

One possible definition of stress is obtained as follows: we note that if there are 
no interfacial effects at  the particle boundariesY’(t), such that T . n is continuous 
across Sp’(t), then the ‘divergence ’ theorem gives 

//9!t,rT-nd*(( = SSS.P(t)v.(rT)dV 

(where V .  (rT) has components a(xiTjk)/iiz, on an orthogonal Cartesian frame). 
With the further assumption of negligible inertia, as embodied in ( 1.  l ) ,  we have 

V. (rT) = T, that 
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and, therefore, the preceding relation can be expressed as 

(2.4) 

where (T) denotes the volume-average stress tensor. Hence, we can show readily 
by (2.1)) (2.3) and (2.4) that 

(r). (T) = (r . T) 
and, as a consequence, that 

The latter relation implies that the stress work derived from the individual 
volume averages of the stress and deformation-rate tensors is the same as the 
volume average of the stress work. Otherwise stated, the volume-average stress 
represents an ‘energy preserving’ definition of stress, under the imposed macro- 
scopic deformation of (2.1). In  this respect, (2.5) is essentially equivalent to a 
result cited by Hashin (1964). This same criterion has served as the basis for 
definitions of macroscopic rheological parameters in many past theoretical 
studies, and we shall likewise adopt i t  here. 

Under the preceding assumption, we are now in a position to formulate the 
rheological equation for the suspension. In  particular, with the above definition 
of the macroscopic stress tensor, it  follows that the macroscopic value of the 
deviatoric stress is also given by the volume average (P) of the deviatoric stress 
P(r, t )  in the suspension. 

Therefore, recalling that, in the subregion of 9 ( t )  occupied by the (Newtonian) 
fluid, the deviatoric stress is given by 

(E) : (T) = (E : T). (2.5) 

P = 2pE, 
one sees that 

(P) - 2p(E) (P - ~,uE) = $(P’- 2pE’) 

= $[(P’) - 2p(E’)1, (2.6) 

where the primes denote now an average over the region occupied by particulate 
phase L%“(t), and where $ denotes the ratio of the volume of 9 ’ ( t )  to that of g(t); 
i.e. $ is the volume fraction of the particulate phase.$ Now, (2.6) will provide a 
rheological relation for a suspension, once the stress and deformation-rate ten- 
sors, P’(r, t )  and E’(r, t )  for a given particle, are specified in terms of the imposed 
deformation rate (E) = ECo) of (2.3). 

Up to this point, we have made no assumption as to the concentration of the 
particulate phase. But now, in order to apply (2.6) in the present work, we shall 
assume that the volume fraction $ of the particles is sufficiently small that inter- 
actions of the individual particles are negligible. Thus following .Happel & 
Brenner (1965), we let the sample volume V of 9 ( t )  tend to infinity and we 
assume that the boundary condition of (2.1) can be replaced by that of (1.4). In  
other words, considering an arbitrarily chosen particle, the velocity distribution 

$ Equation (26), which is a generalization for deformable particles of a formula cited by 
Giesekus (1962), has also been proposed by Landau & Lifschitz (1959, pp. 76-9), who, 
however, offer no detailed justification for its use. 
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in its vicinity is assumed to be governed by (1.2) to (1.4). Although the general 
validity of this assumption has been questioned by Happel & Brenner (1965), it  
can be justified within the framework of the present method. Thus it is reasonable 
to suppose for q5 --f 0 that the difference between the actual values of E‘ and P‘ 
for a particle in the suspension and the values for a single particle, in a large 
volume of fluid subjected to the deformation (2.1), should be at  most O(q5). This 
would imply then that the use of the latter values of (E’)  and (P’) in (2.6) would 
involve an error there O(q52) relative to the leading terms (P) and ( E ) .  As we are 
concerned here only with terms O(q5) we shall make use of the above approxima- 
tion. 

Finally, since we have restricted this analysis to particles which are intrinsic- 
ally spherical and have further assumed the absence of torques on the particle 
arising from external fields or Brownian effects, it  is reasonable to expect that, 
subsequent to any initial state of rest or of isotropic stress in the sample of suspen- 
sion, the motion and orientation of the individual particles will be identical, 
provided of course that the particles all have the same rheological behaviour. 
Assuming this to be the case and making use of (2.3), we can then replace (2.6) by 

(P) = 2pE(O)+ $(P’ - 2pE’), (2.7) 

where P’(t) and E’(t), the same now for alZ particles, are to be determined from 
the relation given in the preceding section, together with a rheological equation 
for the particles. 

2.2. Xuspensions of viscoelastic spheres 

We consider now a suspension of viscoelastic spheres of an incompressible, iso- 
tropic solid. Since we have already restricted our discussion to small strains, we 
shall assume here that the rheological behaviour of the particles is adequately 
described by a constitutive equation of the form 

C’(t) = Pf[Pf(t)], ( 2 . 8 )  

9‘ denoting a ‘ quasi-linear ’ viscoelastic operator 

1 
(2.9) 

1 + a1(9’/9t)  + a2( Sf/ __  ____ 
3k 1 +pl(9’ /m)+p2(9’ /%)2+ -m2+ ... ” * ) .  9 L (  

where k, a,, a2, ... and pl, pz, .. . are constants and where, for any second-order 
tensors B(t) associated with a particle, the operation 9 / 9 t  is defined by 

( 9 ’ / 9 t )  B(t) = (d/dt) B(t) + B .8’ - 8‘. B, (2.10) 

Q’ being the vorticity tensor for the particle. This operation, which is essentially 
the Jaumann derivative (Prager 1961), ensures that (2.9) has the proper material 
frame-indifference, with account being taken of material rotation. 

To facilitate the following discussion we consider first and foremost the simplest 
form of (2.9), the purely elastic particle, in which case (cf. Friihlich & Sack 1946) 

(2.11) 

the constant k (with dimensions of stress) now designating the Hookean elastic 
modulus of the material. 

a, = a2 = ... = pl = p2 = ... = 0 and P’ = C’/2k,  
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For the purposes of the analysis t o  follow, we define the ‘magnitude’ of a 
tensor B by the scalar invariant 

IBI = JB:  B14 = (tr B2)*, (2.12) 

and, in connexion with order-of-magnitude estimates, we shall employ both the 
symbols O(B) and O(s)  to denote tensors with individual components or magni- 
tudes which are O( [BI) or O(s).  Also, we shall henceforthinclude in the O-notation 
certain quantities having physical dimensions, simply to indicate the pertinent 
dimensions involved in various relations. 

Now, in the case of the elastic particle defined by (2.11), (1.23) yields the follow- 
ing expression for the particle strain 

T - ~ C ’  = 3(A + $(A. C‘ + C’ .A) -+(A: C’) I} + $E’ + O(A . C2), (2.13) 

where A = E(0) - E’, as in ( 1.24), and 
def 

T = 3p/2k (2.14) 

is a characteristic time parameter for the suspension. The condition of small 
particle strain postulated in 9 1.3 can now be formulated precisely, by requiring 
that the fluid stress on the particle be much smaller than the elastic modulus. 
Thus we have, by (2.13), that 

c‘ = O(7A) 

for T-+ 0, and, as we shall later confirm, the preceding relation implies that 

A = O(Y) ,  
def 

and, hence, that C’ = O(e) ,  for s = y ~ - t O ,  

where y = ]E(o)l 
(2.15) 

is the macroscopic ‘shear’ rate. The following analysis is based then on the 
postulate that the dimensionless group E = s( t )  is always small relative to unity. 

By means of (1.15) and (1.27) the particle deformation rate E’ can be related 
to the strain C’, in a manner consistent with (2.15), by 

E’ = ( g C ’ / g t )  + E’ . C’ + C’ . E’ + O(YE’) (2.16) 

where, for a second-order tensor B( t ) ,  

BB/% = ( d B / d t )  + B .51- 8.  B (2.17) 

with 51 = GP) being the macroscopic vorticity tensor. 
We have now, in the form of (2.13) and (2.16), a number of relations sufficient 

to determine the particle strain C’ and deformation rate E’, to terms O(s) ,  once 
the appropriate initial conditions, as well as the form of the macroscopic velocity 
gradient P \ ( t ) ,  are specified. With the further relations of (1.23) and (2.71, this 
will permit the specification of the macroscopic rheological equation for the 
suspension, up to terms which are either O(s2)  or O(qP). 

In  the following paragraphs, we shall omit the brackets ( ) and the super- 
scripts zero which were introduced in § 1 to distinguish macroscopic variables. 
Also, we note at  this point that the operation defined by (2.17) is ultimately to be 
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interpreted as the macroscopic Jaumann derivative (Prager 1961)) and, hence, 
the ordinary time derivative in (2.16) must eventually be replaced by the well- 
known material or substantial derivative. 

Equations (2.13) and (2.16) are now to be solved simultaneously for E’ and C’. 
However, because of (2.15), we can immediately express E’ in terms of C‘ by 
successive substitutions on the right-hand side of (2.16). Taking account of the 
incompressibility condition in ( l . l O ) ,  we find thus that 

(2.18) 

where, for the sake of brevity, we have introduced the notation Yd[B]  to denote 
the symmetric part of the deviator of a tensor B; i.e. 

Yd[B] Zf +(B + Bt - g(tr B) I>. (2.19) 

In applying (2.19), it should be recalled that all the stress and deformation tensors 
heretofore introduced, as well as their derivatives 9/B, are symmetric. 

When (2.18) is substituted into (2.13) to eliminate E’, we obtain the following 
differential equation for C’, 

(2.20) 

in which we recall that E denotes the macroscopic deformation rate. In  a similar 
way one finds, by (1.23) and (2.18)) that the quantityof ultimate interest, which 
appears on the right-hand side of (2.7)) is given by 

P’-2pE’ = 5p (( E-- 2’) +Y$ (E-s lo 9“’) .C’] + O(Yh2)). (2.21) 

Hence, the problem consists essentially of solving (2.20) in such a way as to yield 
expressions for C’ and 9 C ’ / 9 t  with an error O(e2),  which will be suitable for 
substitution into (2.21); this can be accomplished formally as follows. 

First of all, we note that in (2.20) the terms occurring inside the argument of 
Yd[ ] are O(E)  relative to the remaining, explicit terms. Therefore, we can once 
again employ a method of successive approximations based on small E ,  to treat 
(2.21). Thus, neglecting the second term on the right-hand side of (2.20)) we have, 
as a first approximation, that 

(2.22) C ’ = -  :%’ { 7E}+ 0(e2), 

and, on substitution of this expression into the right-hand side of (2.20), as a 
second approximation, that 

C’ = ~%‘(TE + ~ T Y ~ [ . % ( E > .  %‘{TE)] + O( e2)), (2.23) 

where %’ and @ denote the linear operations 

“{B} = [ 1 + ~ ( 9 / 9 t ) ] - - l B  and @{B} = [l-  3~(9/9t)]W{B}.  (2.24) 

By means of a calculus for the Jaumann derivative, discussed recently by 
Goddard & Miller (1966), it  is possible to express the operations of (2.24) in closed 
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form, i.e. to integrate the differential equations implied there, subject of course 
to the appropriate initial conditions. In  the present work we shall leave these and 
subsequent, related operations in the ‘implicit’ form (2.24), noting simply that 
they can also be rendered explicit by means of the expansion 

provided that 

(2.25) 

(2.26) 

where 0 < h < 1 is a constant. Since the macroscopic vorticity tensor 8 can be 
made to vanish by appropriate choice of the reference frame (which incidentally 
is the basis for the aforementioned calculus of 9/9t), the inequality in (2.26) is 
effectively a restriction on the time rates of change of B. 

In  view of the expression (2.32) for C‘ we note that, even when E is a rapidly or 
discontinuously varying function of time (as in the case of a suddenly imposed 
macroscopic deformation), our original assertion that the particle strain C’ is 
O(s)  should remain valid, subject only to the previous restriction on the magni- 
tude of E, E < 1; this can be inferred simply from (2.22) by consideration of an 
irrotational flow, Q = 0 ,  in which case the operations in (2.24) can easily be 
rendered explicit. In  like manner one concludes that g C ’ / B t  and, hence, E’ are 
either O(ye) ,  whenever (2.26) holds, or at  most O(y) ,  for rapidly varying E, which 
in either case confirms the estimate (2.15). 

To obtain an expression for the derivative 9 C f / 9 t ,  we now substitute the 
expression (2.23) for C‘ into all the terms of (2.20), except the term 9 C ’ / 9 t  on 
the left-hand side. We obtain thus an expression for that derivative which is 
accurate to terms O(e) and which, therefore, is suitable for subsequent substitu- 
tion into (3.21), together with the expression (2.22) for C’. The resulting equation 
is, of course, to be employed then in (2.7). Omitting the algebraic details, we 
consequently obtain the rheological equation for the suspension, up to terms that 
are presumably O(qP), 

P - 2pE = 5p$(d{E} + %%?{Yd[H{E}. %‘{TE}]} 
-~S%![&‘{E}.%?{TE}] +O(y@)), (2.27) 

where d ( E }  = [ 1 - +T( 9/9t)] %?{E}, (2.28) 

and the operations H, %? and Ydare given by (2.24) and (2.19). 
As pointed out previously, the various operations in (2.27) could be rendered 

explicit by means of a calculus for the Jaumann derivative (Goddard & Miller 
1966). However, this would be somewhat superfluous whenever E satisfies (2.26) 
as, for example, is the case with steady simple-shearing flows. For then, by apply- 
ing the inverse of the operation %? to both sides of (2.27), making use of the expan- 
sion (2.25), and retaining only those terms of O(E)  relative to the leading terms, 
one can reduce (2.27) to the more explicit form 

1 9 E  
Qt 

( l + + $ ) E + ( l - + $ ) ~  , + y $ ~ ( E ~ - Q t r ( E ~ ) I ) + 0 ( e ~ y )  . 
(2.29) 
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Equation (2.29) could of course be cast into other forms, by means of expansions 
similar to (2.29), but these would all be equivalent to terms O(e). 

We note that if the non-linear terms in E and 8 are omitted from (2.27) and 
(2.29) the resulting equations differ only by terms that are O(q52) from the relation 
given previously by Frohlich & Sack (1946). The non-linear terms derived here 
result evidently from the effect of stress-induced ellipticity of the particles on the 
flow field of the suspending fluid. 

Now, the preceding analysis for elastic spheres is applicable, with certain 
restrictions, to suspensions of the viscoelastic spheres defined by (2.9). In particu- 
lar, because of (1.27) it  appears that one can replace the derivative 9‘/9t in 
(2.9) by the macroscopic Jaumann derivative of (2.17), with an absolute error of 
O(e2), provided that the constants in (2.9) satisfy the relations 

a, = O(P) ,  ,8, = O(rn), for 7+0, (2.30) 

for 11. = 1,2 ,3 ,  . . . , where as before T is the characteristic time defined by (2.14). 
In  this case, (2.20) to (2.28) remain equally valid for a suspension of visco- 
elastic spheres, if the time constant T is everywhere replaced by the operator 

(2.31) 

derived from (2.9). Although it appears that weaker conditions than (2.30) might 
be justified in certain cases, we shall not pursue this question further here. We 
note, however, that if non-linear terms in E and S are again omitted from (2.27) 
one obtains, to terms O(#),  Oldroyd’s (1953) generalization of the Frohlich-Sack 
equation. In passing, it should also be noted that in many instances operators 
such as (2.9) and (2.31) could more appropriately be expressed in closed form by 
means of a calculus for the Jaumann derivative (Goddard & Miller 1966). 

As a limitation on (2.27), we should discuss briefly here the assumption of 
negligible inertia embodied in (1.1). Since the suspending fluid is presumed to be 
Newtonian, the approximation of negligible inertia can be based on the usual 
‘Reynolds-number ’ criterion, which takes the form here: 

Ya: PIP e 1, (2.32) 

where, as above, a, is the undeformed particle radius, y the magnitude of the 
deformation rate for the fluid, p its viscosity, and p its density (cf. Happel & 
Brenner 1.965). On the other hand for the solid particles considered here, having 
approximately the same density as that of the fluid, inertial effects in the particle 
should be negligible provided that 

py2a;p = $€(ya; pip) < 1, (2.33) 

where k is the elastic modulus of the particle. One sees, however, that (2.33) 
follows a,fortiori from (2.32) and the condition 6 < 1 postulated above. 

Since (2.32) involves parameters which do not enter into the preceding analysis, 
the condition stated there can in principle be realized independently of our pre- 
vious assumptions. For example, (2.32) would always hold for very small part- 
icles, although it should be noted that in practice there is a lower limit on par- 
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tide size for which the orientation effects of Brownian motion can be neglected. 
At any rate, one can conceive of suspensions where the non-linear terms appearing 
in (2.27) are important, even when inertial effects play a negligible role in the 
particle deformation a t  the microscopic level. 

I n  closing here, it is interesting to note that (2.29) is a special case of the well- 
known phenomenological equation proposed by Oldroyd (1958); by means of the 
analysis presented in his paper one deduces that, in a steady simple-shearing 
flow, a fluid described by (2.29) would exhibit ‘shear thinning’ and unequal 
normal stresses in all three directions, each directly proportional to 7. 
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